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Tonal Consonance and Critical Bandwidth

R. Proae axp W. ]J. M. LEVELT

Inslitute for Perception RVO-TNO, Soesierberg, Netherlands

Firstly, theories are reviewed on the explanation of tonal consonance as the singular nature of tone intervals
with frequency ratios corresponding with small integer numbers. An evaluation of these explanations in the
light of some experimental studies supports the hypothesis, as promoted by von Helmholtz, that the dif-
ference between consonant and dissonant intervals is related to beats of adjacent partials. This relation
was studied more fully by experiments in which subjects had to judge simple-tone intervals as a function of
test frequency and interval width. The results may be considered as a modification of von Helmholtz's
conception and indicate that, as a function of frequency, the transition range between consonant and dis-
sonant intervals is related to critical bandwidth. Simple-tone intervals are evaluated as consonant for
frequency differences exceeding this bandwith, whereas the most dissonant intervals correspond with fre-
quency differences of ahout a quarter of this bandwidth. On the base of these results, some properties of
consonant intervals consisting of complex tones are explained. To answer the question whether critical
bandwidth also plays a rdle in music, the chords of two compositions (parts of a trio sonata of J. S. Bach
and of a string quartet of .\. Dvofik) were analyzed by computing interval distributions as a function of
frequency and number of harmonics taken into account. The results strongly sugeest that, indeed, critical
bandwidth plays an important rdle in music: for a number of harmonics representative for musical instru-
ments, the “density” of simultaneous partials alters as a function of frequency in the same wayv as critical
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bandwidth does.

INTRODUCTION

HM’S acoustical law, as formulated by von
Helmbholtz,! states that the human ear is able to
analyze a complex of tones into its sinusoidal compon-
ents. In a previous paper,? one of the authors reported
experiments on the number of distinguishable partials
of multitone signals and showed that partials can be
“heard out” only- if their frequency separation exceeds
critical bandwidth.

The fact that there are certain limitations to the
validity of Ohm’s law was not overlooked by von
Helmbholtz. In his opinion, however, the exceptions did
manifest. themselves mainly in the appearance of beats
in the case of small frequency differences between two
simultaneous tones.? On this basis, by taking into
account also beats between adjacent harmonics, von
Helmholtz was able to explain why- the phenomenon of
musical consonance is related to simple frequency ratios
of the tones involved.* Though this conception became

1H. von Helmholtz, Die Lehre von der Tonempfindungen als
physiologische Grundloage fiir die Theorie der Musik (Verlag
I, Vieweg & Sohn, Braunschweig, 1863), Chap. 2.

2R, Plomp, “The Ear as a Frequency Analyzer,” J. .\cousl.
Soc. Am. 36, 1628-1636 (1964).

3 Ref. 1, Chap. 8.

4 Ref. 1, Chap. 10.

well-known, it was criticized severely, in particular by
psvchologists and musicologists.

In this paper, the relation between beats and conson-
ance is studied again.® To avoid misunderstandings, it
may be useful to emphasize in advance that our sole
concern is the question of why consonance is related to
simple frequency ratio. Though the concept of conson-
ance is rather vague and may be different for musicians
and laymen, this relationship is always involved. In our
opinion, consonance refers to the peculiar sensorial
experience associated to isolated tone pairs with simple
frequency ratios. We use the term fonal consonance
to indicate this characteristic experience. As we shall
see, experimental results concerning * tonal consonance”
support von Helmholtz’s conception, but they also
necessitate a number of qualifications in which the
concept of critical bandwidth will appear to play an
important role.

3 A preliminary report of it was read at the Fourth International
Congress on Acoustics, Copenhagen, 1962: R. Plomp and W. J. M.
Levelt, “Musical Consonance and Critical Bandwidth,” Paper
P35 1n Proceedings of the Fourth International Congress on Acoustics,
1962, Copenhagen (Organization Committee of the 4th ICA and
Harlang & Toksvig, Copenhagen, 1963).
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TONAL CONSONANCE

1. HISTORICAL REVIEW
A. Explanations of Consonance

Traditionally, Pyvthagoras is considered 1o be the
discoverer of the fact that tones produced by o string
vibrating in two parts with length ratios of 1:1, 1:2,
2:3, and 3:4, respectively, give much better harmonics
than all other ratios. These tone intervals were called
consonances, and on their singular character the har-
mony of Western music has been developed, especially
after, in the Middle Ages, other intervals with ratios
of 4:5, 3:5, 5:6, and 5:8 were accepted as imperfect
consonances.

The question why consonance is related to simple
integer ratios of string lengths has occupied many
scholars through the ages. In particular, between about
1860 and 1920 numerous studies were devoted to it
Essentially all explunations proposed® are buased on one
or more of the following data.

1. Frequency Ralio

One of the frst and most important discoveries m
acoustics during the rise of modern science in the 16th
and 17th centuries was the dependence of pitch on
frequency.” The latter implied that consonant intervals
arc characterized by simple frequency ratios, which
suggested an attractive hyvpothesis concerning the origin
of consonance. So Galilel stated: “Agrecable con-
sonances are pairs of tones which strike the car with a
certain regulariiv; this regularity consists in the fact
that the pulses delivered by the two tones, in the same
interval of time, shall be commensurable in number, so
as not to keep the ear drum in perpetual torment,
bending in two dilferent directions in order to vield
to the ever-discordant impulses.” Other scientists as
Letbniz and Euler refined this explanation, exchang-
ing the cardrum for the uneonsciously counting soul
that would prefer intervals the more us the vibrations
of the constituting tones concur more frequently.
Substantially the same idea was promoted and worked
out by Lipps® and Polak," whercas the recent “common
long pattern theory” of Boomsliter and Creel™ also
must be considered as belonging to this group.

6 In this survey, only explanations related to hearing theory
are included.

7 A thoroughgoirg study of this discovery is given by C. Trues-
dell, The Ralional Mechanics of Flexible or Flastic Bodies, 163§~
1788, Leonhardi Euleri Opera Omnia Ser. IX, 11, Pt. 2 (Verlag
0. Fiissli, Ziirich, 1960), Pt. 1.

8 Galileo Galilel, Discarsi e dimosirasions matemutiche inlerno d
dwe nuove sciense atlenenti alla mecanica ed i movimenti locali
(Flsevier, Leiden, 1638). The quotation is from the DInglish
translation, Dialogues concerning Tiwo New Sciences, ltansl. by
H. Crew and A. de Salvio (McGraw-Hill Book Co., Inc., New
York, 1963), p. 100.

9 Th. Lipps, Psychologische Studien (Verlag G. Weiss, Heidel-
herg, 1885), pp. 92-161.

WA, J. Polak, Uber Zeiteinheil in Bezug auf Konsonans, Iar-
monie und Tonalitit (Verlag Breitkopf & Hirte!, Leipzig, 1000).

U P, Boomsliter and W, Creel, “The Long Pattern Hypothesis
in Harmony and Hearing,” J. Music Theory 5, Ne. 2, 2-30 (1961).
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2. Relationship of Harmonics

The discovery (17th century) that the tones of
musical instruments are composed of partials® gave rise
to an alternative explanation of consonance. At first,
the mere presence of harmonics with frequency ratios
1:2, 2:3, etc., in every (complex) tone was considered
as o sufhcient proof of the consonance of these ratios
(Rameaw). In the 19th century, more-thoroughly
formulated implications of the existence of harmonics
were presented. Both von Helmholtz? and Wundt'
based the development of melody and harmony on the
coinciding harmonics for consonant intervals. The
opinion that consonance itself originates in these coin-
cidences was defended more recently by Ogden® and
Husmann,® though from ditferent points of view.
Montani'® has tried to give this explanation a phy-
siological base.

3. Beals belwween Harmonics

The existence of harmonics led also to a quite different
hypothesis, in which the phenomenon of consonance was
related 1o beats and roughness, appearing for small
frequency dilferences of simultaneous tones. Though
nearly alwavs von Helmholtz is mentioned as the
originator of this conception, there are much older
statements of a quite similar nalure (Sorge!”). von
Helmholtz? stated that for small frequency differences
the beats between two simple tones can be heard in-
dividually, but for larger distances this becomes impossi-
ble, due 1o their rapid succession, and the sound obtains
a rough and unpleasant character. He ascertained that
this roughness has o maximum for a frequency difference
of 30-40 cps, independent of frequency, but admitted
also that for u constant difference the roughness in-
creases with frequency. For larger frequency dillerences,
roughness decreases and the sound becomes consonant
and agreeable, independent of frequency ratio. For
complex tones, as produced by musical instruments,
also beats between harmonics of the lower tone and
harmontcs of the higher one must be taken into account.
In this way, von Helmholtz explained! that the smaller
that the numbers are in which the frequency ratio can
be expressed, the more consonant the interval is. The
octave, with a frequency ratio of 1:2, is the most con-
sonant interval because all partials of the higher tone
coincide with purtials of the lower one and no beats are
introduced. The next most consonant interval is the

12 Ref. 1, Chaps. 14, 13.

W, Wundt, Grundsiige der plysiologischen Psychologie (Verlag
W. Tngelmann, Lcipzig, 1880), 2nd ed., Vol. 1, pp. 402-408,
Val. 2, pp. 35-18.

YR ML Ogden, “A\ Contribution to the Theory of Tonal Con-
sonance,”” Psychol. Bull. 6, 297-303 (1909).

¥ H. Husmann, Vem Wesen der Konsonanz (Miller-Thiergarten-
Verlag, Heidelberg, 1953).

16 A, Montani, “Outline ol a2 Physiological Theory of Musical
Consonance,” Riv. Musicale 1tal. 49, 168-176 (1947).

17 G. A. Sorge, Vorgemach der musicalischen Composition (Verlag
des Autoris, Lobenstein, 1745-1747), pp. 333, 334
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fifth (2:3), for in this case half of the partials coincides,
whereas the other ones lie just half-way between partials
of the lower tone. He considered it an afirmation of his
theory that, in musical practice, thirds and sixths are
avoided in the low-frequency range where partials are
nearer to each other than at higher frequencies.

4. Difference Tones

Though von Helmholtz had not denied that also
beats between difference tones may contribute to dis-
sonance, this aspect was much more emphasized by
Preyer,'® and in particular by Krueger.!®®® On the basis
of detailed experiments on difference tones* Krueger
concluded that the significance of these tones was
strongly underestimated by wvon Helmholtz. As the
total number of difference tones increases with com-
plexity of frequency ratio, these tones could explain
the order of consonant intervals, not only for complex
but also for simple primary tones. More recently,
Sandig” compared the character of intervals with both
tones presented to the same ear and intervals with one
tone presented to the left and the other one to the right
ear, respectively, regarding the more neutral character
of intervalsin the last case as an afirmation of Krueger’s
theory.

5. Fusion

A quite different point of view was developed by
Stumpf.®® In his opinion, neither harmonics nor differ-
ence tones are essential to discriminate between
consonant and dissonant intervals, whereas he re-
jected the frequency-ratio theorv as mere specula-
tion. Stumpf called attention to the fact, investigated
by him before* and confirmed by many others after
him, that the degree of fusion (*Verschmelzung’) of
intervals depends on simple frequency ratio in the same
order as consonance does. By fusion, he meant the
tendency of two simultaneous tones to be perceived as a
unity. Stumpf understood the close connection to con-
sonance as a causal relation, fusion being the basis of
consonance. However, many vears later, he admitted
that this conclusion was not justified and that the rela-
tion cannot be considered as a satisfactory explanation
of the consonance phenomenon.?

13NV, Preyer, Akustische Untersuchungen (Verlag G. lischer,
Jena, 1879), pp. 44-61.

1917 Krueger, “Dillerenztone und Konsonanz,” Arch. Ges.
Psychol. 1, 203-275 (1903); 2, 1-80 (1904).

2 F_ Krueger, “Die Theorie der Konzonanz,” Psychol. Studien
1, 305-387 (1906); 2, 205-255 (1907); 4, 201-282 (1909); 5,
204411 (1910).

2 A summary of the results of these experiments can be found
in R. Plomp, “Detectability Threshold for Combination Tones,”
J. Acoust. Soc. Am. 37, 1110-1123 (1965).

2}, Sandig, “Beobachtungen an Zweiklingen in getrennt-
ohriger und beidohriger Darbietung. Ein Beitrag zur Theorie
der Konsonanz,” Neue Psychol. Studien 14, 25-131 (1939).

2 C., Stumpf, “Konsonanz und Dissonanz,” Beitr. Akust.
Musikwiss. 1, 1-108 (1898).

2% C. Stumpf, Tonpsychologie (Verlag S. Hirzel, Leipzig, 1890),
Vol. 2, pp. 127-218.

% C. Stumpf, Die Sprachlaute (Verlag J. Springer, Berlin,
1926), p. 281.
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B. Evaluation of These Explanations

The existence of these divergent theories suggests
that consonance is a complex phenomenon and that
conclusive experiments on the value of the explanations
mentioned are diffhicult to find. In contrast with the
time before about 1920, modern books on hearing pay
only little or no attention to consonance.?® Is this lack
of interest justified and must we admit that those in-
vestigators are right who considered consonance as
determined mainly or exclusivelv by cultural?’.?® or
even genetic*® factors?

In answering this question, we have to realize that
our consonance perception is indeed profoundly in-
fluenced by the development of Western music and
musical training. This is illustrated in two ways.

1. The primary reason why von Helmholtz’s ex-
planation of consonance by beats wus rejected by many
investigators was that in their opinion the degree of
consonance or dissonance of an interval is not altered
by removing the harmonics of the component tones. A
study of the observations on which this opinion was
based shows that, without exception, musically trained
subjects were used to judge the intervals. This was not
considered as a difficulty but, on the contrary, as an
essential condition to obtain relevant responses. Stumpf
himself, perhaps the most important critic of the beat
theory, may be presented as a good illustration. His
large interest in the psychology of tone was due to the
fact that originally he intended to become a musician.®
For him, judgment of a particular tone interval was
identical to finding out its musical name, and this
knowledge determined entirely the consonance value
that he aftached to the interval. For this reason, he
considered intervals like 8:15 and 7:10 as dissonants,
also in cases without audible harmonics and difference
tones. Apparently, this approach was so self-evident to
him (aund many others) that he did not realize that his
results had nothing to do with the origin of consonance
and dissonance but must be considered only as a demon-
stration of the success of his musical education and
training. The large influence of training was demon-
strated by an investigation by Moran and Pratts! in

*This may Dle illustraled by S. S. Stevens and H. Davis,
Hearing (John Wiley & Sons, Inc., New York, 1938). Though
L. G. Boring in his “Perspective” at the beginning of the book
refers to the work of H. von Helmholtz and closes with the words,
“Certainly we are ready now for a new Lekre von den Tonem pfin-
dungen to orient us among the complexities of the new physiologi-
cal acoustics which is now so successfully answering questions
which Helmholtz posed,”” this book spends only one paragraph to
the phenomenon of consonance, merely mentioning von Helm-
holtz’s expanation without comments.

' N. Cazden, “Musical Consonance and Dissonance: A Cultural
Criterion,” J. Aesthet. 4, 3-11 (1945).

#R. W. Lundin, “Toward a Cultural Theory of Consonance,”
J. Psychol. 23, 45-49 (1947).

% H. T. Moore, “The Genetic Aspects of Consonance and
Dissonance,”” Psychol. Monogr. 17, No. 2, 1-68 (1914).

#® C. Stumpf, Tonpsychologie (Verlag S. Hirzel, Leipzig, 1883),
Vol. 1, Preface.

% H. Moran and C. C. Pratt, “Variability of Judgments on
Musical Intervals,”” J. Exptl. Psychol. 9, 492-500 (1926).
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which 3 observers, who were able to recognize any given
musical interval, had to adjust the frequency of one of
the tones of each of a series of intervals to the correct
vitlue for that interval. The results, obtained {or simple
tones, indicated that for each of the subjects the average
seltings were more inagreement with the interval widths
after the equally tempered scale, as used in music, than
after the natural scale, given by simple frequency
ratios. These results show that we have to make a clear
distinction between interval recognition and conson-
ance judgment. The ability to recognize frequently used
intervals docs not explain why the singular nature of the
impressions produced by particular intervals is related
to simple frequency ratios of the component tones.

2. The influence of music on the judgment of intervals
can be shown in another way also. Originally, only 1:1,
1:2, 2:3, and 3:4 were considered as consonant and
agreeable intervals. Nowadays, the situation is much
more complex. Asking a jury of musicians and psy-
chologists to ascertain the rank order of consonance of
all intervals within the octave, Malmberg™ ohtained the
order 1:2, 2:3, 3:5, 3:4 and 4:5, 5:8, 5:0, 5:7, 3:9,
8:9, 8:13, und 13:16. Guernsey® has confirmed the
well-known fact that musicians make a clear distine-
tion between pleasantness and consonance. In this
study, it was found that for a group of musicians the
ranking of intervals for consonance wis about the same
as that obtained by Malmberg, but the ordering in terms
of pleasantness was quite different: sixths (3:3, 5:8),
thirds (4:3, 5:6), fourth (3:4), and minor seventh (3:9)
did share the highest rank. Tor naive subjects, however,
consonance and pleasantness are much more similar
concepts, as was demonstrated by the authors™ in an
experiment in which 10 subjects had to judge a large
number of intervals on 10 dilicrent semantic scales. A
high correlation between consonance and pleasaniness
scores was found. In fact “*consonance’” appeared 1o he
used as an evaluation category. For these subjects, 1o,
the sixths, thirds, and fourth were the most pleasant
miervals, but their evaluation of the octave and fith
was much higher than for musicians, as was also the
case in Guernsev’s experiments.® I'rom these results,
we may conclude that the original concept of consonance
has been split up in two opinions : one held by musicians,
the other by naive subjects. This development must be
seen as a consequence of the fact that, in the course of
history, preference did shift from intervals given by 1:2,
2:3, and 3:4 1o more-complex frequency ratios. For
laxymen, the meaning of the term consonance followed
this shift. Musicians, however, did maintain the tradi-
tional rank order of intervals in terms of consonance,

# . F. Malmberg, “The Perception of Consonance and Dis-
sonance,” Psychol. Monogr. 25, No. 2, 93-133 (1917-1918).

® M. Guernsey, “The Role of Consonance and Dissonance in
Music,” Am, ]. Psychol. 40, 173-204 (1928).

¥, P. van de Geer, WW. J. M. Levelt, and R. Plomp, “The
Connotation of Musical Consonance,” Acta Psychol. 20, 308-319
(1962).
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characterized by smoothness and uniformity, independ-
ent from evaluation.

After these two digressions on the relation of con-
sonance to music the question can be asked as 1o how
to evaluate the vartous consonance explanations men-
tioned in Sce. 1-AL In our attempt 1o answer this ques-
tion, we are interested in perception of consonance not
so much as a product of musical education and training
but as a dasis of it. [n our opinion, there exists a typical
sensorial phenomenon that is related to simple integer
frequency ratios and that is of a general nature, holding
also for subjects without anyv experience in musical
harmony. This particular sensorial phenomenon, which
we call “tonal consonance,” may be considered to be
hasic to the relation between the concept of conson-
ance, as held by musicians and laymen, and simple
frequency ratios.

With these restrictions in mind, the results of only
a few experiments are relevant to decide upon the
merits of the five dilferent types of consonance ex-
planation. The most pertinent study is that by Guthrie
and Morril* on the judgment of intervals composed
of two simple tones. In this experiment, about 380
subjects were presented with H dilferent intervals,
with frequency ratios from 1:1 to bevond 2:3, and the
subjects were asked to judge the interval as consonant
or dissonant, and as pleasant or unpleasant, respectively.
In Iig. 1, the average results are reproduced. The fact
that the two curves are quite similar is in agrecment
with the conclusion, mentioned above, that for the
naive subject the notions consonance and pleasantness
are nearly identical.

In this connection, another investigation, in which
only pleasantness was examined, is also relevant. In
that study, carricd out by Kaestner 3 pairs of intervals

a9 56 45 3:4 57 2:3

—_— ]
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I16. 1. Percentage of subjects who judged simple-tone intervals
as consonant (solid curve) and pleasant (dashed curve), re-
spectively, plotied as a function of frequency difference between
the tones. For all intervals the frequency of the lower tone was
393 cps. [After Guthrie and Morrill 3]

3 5. R. Guthric and H. Morrill, “The Fusion of Non-Musical
Intervals,” Am. J. Psychol. 40, 624+-625 (1928).

% G. Kaestner, *Untersuchungen iiber den Geliihlseindruck
unanalysierter Zweiklinge,"” Psychol. Studien 4, 473-304 (1909).
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1'16. 2. Percentage of cases in which a tone interval was judged
as more pleasant than the other ones, plotted as a function of
frequency difference between the tones. The solid curve represents
the data for simple, the dashed curve for complex tones. IFor all
intervals, the frequency of the lower tonc was 320 cps. [\fter
Kaestner 367]

were presented successively to observers who were
asked to indicate which one was more pleasant. These
experiments were performed for intervals composed of
either simple or complex tones. In hoth cases, about 30
intervals within the octave were involved and all pairs
of intervals were judged. In Fig. 2, the mean values of
the most important results are presented. The simple-
tone curve agrees with the curves of Iig. 1, whereas the
other curve, based on complex toncs, shows marked
peaks for simple frequency ratios.

These experiments are very useful to evaluate the
different explanations of consonance. As we sce, for
intervals composed of simple tones, simple frequency
ratios did not result in singular points of the curves.
On the contrary, the curves suggest that frequency
distance rather than frequency ratio 1s the decisive
parameter. For increasing frequency difference, the
curves show a marked minimum, followed by a broad
maximum.

The only explanation supported by the results of
these two experiments is the theory promoted by von
Helmholtz, after which the dissonance of an interval
is primarily duc to rapid beats between the component
tones. In both investigations, the minimum of the
curves corresponds verv well with a frequency ditfer-
ence of 30-10 cps, in accordance with von Helmholtz’s
statement of maximum dissonance. The fact that the
curve of Tig. 2 based on complex tones shows murked
peaks for the intervals corresponding with simple fre-
quency ratios is in agreement with this explanation.

On the other hand, the experiments do not support
the other explanations mentioned in Sec. 1-A. Against
these views, the following objections can be raised :

1. The hypothesis that, anywise, frequency ratio is
perceived is contradictory to the finding that the simple-
tone curves of Figs. 1 and 2 do not have peaks for simple
ratios. All evidence in this direction must be due to
interval recognition as a result of musical training, the
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importance of which is demonstrated by the experi-
ments of Moran and Pratt, mentioned above.

2. Insofar as consonance explanations based on re-
lationships of harmonics imply that the presence of
harmonics in every complex tone results in a “condi-
tioning” for simple frequency ratios, the objections of
(1) again do apply. In another view on the influence
of harmonics, consonance is considered to be related to
the number of coinciding harmonics during actual
sounding of two complex tones simultaneously. How-
ever, it is not clear how this coincidence may be relevant
to consonance other than by ihe absence of beats or
difference tones, because every common partial may be
regarded as belonging to only one of the complex tones.

3. The influence of difference tones on consonance
perception also is not very probable in view of the data
reproduced in Figs. 1 and 2. Moreover, experiments of
one of the authors on the audibility of combination
tones? showed that the nonlinear distortion of the
hearing organ is so small that it cannot be regarded as
a constitutive base for consonance.

4. The fact that the rank order of consonant intervals
is correlated with their degree of fusion cannot be
considered as a satisfactory explanation, as Stumpf®
himself admitted. This does not mean that the relation
has no relevance. However, in this paper it is left out
of consideration.

Trom this survey, we may conclude that it is of inter-
est to investigate more thoroughly the hypothesis that
tonal consonance, the peculiar character of intervals
composed of complex tones with simple frequency
ratios, is due to the absence of rapid beats hetween
harmonics of the component tones.

II. EXPERIMENTS

In the investigation by Guthrie and Morrtill, tone
intervals were involved onlyv with a lower tone of
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mean frequency of 125 cps as a function of frequency difference
between the tones. The solid curve corresponds with the median,
the dashed curves with the lower and upper quartiles of the
scores (11 subjects).
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395 cps. Kaestner used 236 and 320 cps for this fre-
quency. So these studies do not give information on
the degree to which evaluation of intervals, composed of
simple tones, depends on frequency. For a better in-
sight in the relation between consonance and heats, the
answer to this question is of great interest, and for this
reason the authors planned the following experiments.

A. Method and Procedure

In the experiments, observers had to judge tone
intervals as a function of two parameters: situation of
the interval in the frequency range and frequency
difference between the component tones. As a measure
of the first parameter, the geometric mean of the fre-
quencies of the two tones was taken. In order to scpir-
ate the influence of the parameters as much as possible,
this mean frequency has advantages to frequency of the
lower tone of the intervals which was used in earlier
studies. For the same reason, dilferent groups of ob-
servers were used for each of the mean frequencies
involved.

The subjects judged each tone interval on a 7-point
scale, *‘consonant—dissonant,” 1 corresponding with
most dissonant, 7 with most consonant. Some subjects
asked for the meaning of cousonant. In that case, the
experimenter circumscribed the term by beautiful and
euphonions. This procedure is justilied because, as was
ascertained carlier,™ consonant, beantiful, and enphonions
are highly correlated for naive subjects. In fact, they
represent one dimension in semantic space : evaluation,

The experimental setup was very simple. The tones
were produced by 2 sine-wave oscillators and repro-
duced by a loudspeaker in front of the observer. The
sound pressure near the subject’s ear was kept at a
constant level of about 63 dI3 re 2.10-1 dyn, cm®. The
subjects were tested individually in a soundproof room
with sound-absorbing walls. The experimenter was
scated in another room and presented cach interval
during about 1 sec. After each exposure, he had to
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I16. 5. s Fig. 3, but with mean frequency 500 cps (11 subjects).

readjust the frequency of the oscillators, resulting in a
pause of 10-20 sec between exposures. An electronic
counter was used to adjust frequencies very accurately,

The experiments were carried out for 3 values of the
mean frequency of the intervals: 123, 250, 500, 1000,
and 2000 cps. Each subject was used only in one test
session, in which he had to judge 12-14 different
interval-width  values around one of these mean
frequencies. To avoid the influence of interval recogni-
tion, the widths of these intervals were chosen on base
of frequency dilference, not on frequency ratio.

The following procedure was used. First, the subject
read written instructions concerning the purpose of the
test and the way in which he had to record his responses
on a sheet with horizontal lines, each provided with 7
short vertical dashes. After that, a preliminary series
of 10 dillerent intervals, chosen at random out of the
interval widths used in the experiment, was presented
in order 10 make the subject familiar to the differences
between the stimuli and to warrant an adequate use
of the 7-point scale. Then, 3 series of 12-14 intervals
were presented (12 for 125 ¢ps, 14 for the other mean
frequencies). Yach of these series contained the same
interval widths but in a difierent (random) order. Al-
ways the first interval of a series was different from the
last one of 1he preceding series.

The test subjects were young male adults of about 20
vears of age and with secondary-school training. For
the mean frequencies 1235, 230, 500, 1000, and 2000 cps,
the number of subjects was 19, 22, 18, 11, and 18,
respectively.

B. Results

To exclude data of subjects who were not able to
give consistent responses, for each of them test-retest
reliability wuas determined by calculating the correla-
tion coefficient between the scores of the first and the
last of the 3 series of interval widths presented to the
subjects. Only the data of those subjects were main-
tained who had a correlation coefficient above 0.3.
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Fi16. 6. As Fig. 3, but with mean frequency 1000 cps (10 subjects).

Their average scores of the 5 series were used for further
calculations. In this way, the number of accepted
subjects was reduced to 11, 10, 11, 10, and 8, respcc-
tively, for the mean frequencies 123-2000 cps.

In Figs. 3-7, the experimental results for the dif-
ferent mean frequencies are reproduced as a function
of interval width. In each of these graphs, the solid line
connects points representing the median; the other
lines correspond_with the lower and upper quartiles
of the scores.

C. Discussion

The curves of Figs. 3-7 have the same general course
as of Figs. 1 and 2 (solid line). For small frequency
differences, they show a minimum, followed, for larger
differences, by a more or less broud maximum. To
characterize the curves, two points can be used: the
minimum and the frequency difference for which the
maximum is reached. We pay some attention to each
of them.

In Fig. 8, the interval widths corresponding with the
minima of the curves of Figs. 3-7 are plotted as a
function of mean frequency. Also, for the curves of
Guthrie and Morrill and of Kaestner, the minima are
marked.

The only other data found in literature with which
our results can be compared are from Cross and Good-
win 37 who published some data concerning the *“‘point
at which the harshness of the dissonance produced by
the tones of two resonators reaches a maximum.”
These points, investigated for only one subject, are
reproduced in Fig. 8.

In comparing and evaluating these data, we have to
realize that the minima in the consonance curves are
rather broad, so that the points are not very precise.
Nevertheless, it will be clear that the experimental

37 Ch. R. Cross and H. M. Goodwin, “Some Considerations
regarding Helmholtz’s Theory of Consonance,” Proc. Am. Acad.
Arts Sci. New Ser. 19, 1-12 (1893).
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results do not confirm von Helmholtz’s opinion that the
frequency difference for maximum roughness is in-
dependent of frequency. Though the value of 3040
cps, given by him, agrees with the data points in the
frequency range between 300 and 1000 cps, the general
trend of the data indicates that, for increasing fre-
quency, also the interval width for maximum rough-
ness or dissonance increases. The solid curve corres-
ponds with 25%, of the critical bandwidth, adopted from
a paper of Zwicker, Flottorp, and Stevens.? This curve
is based on the results of several investigations on
masking, loudness, and the ear’s sensitivity to phase
differences. The graph suggests that, instead of von
Helmholtz’s hypothesis of a constant frequency dif-
ference, a frequency difference proportional to critical
bandwidth gives a better fit to the data.

Similar things can be said about the minimum fre-
quency difference of intervals that are judged as con-
sonant. In Fig. 9, the vertical dashes represent the
interval widths for which the curves of Figs. 1-7 reach
their maximum. As, for some curves, this value cannot
be determined exactly, dashes instead of points are
plotted. In the same graph, relevant data of some other
studies are reproduced. The open points correspond
with the limit of audible beats as determined by Cross
and Goodwin®?; the crosses correspond with the smallest
consonant intervals after an investigation by Mayer.®
A clear relationship exists between these data, justify-
ing the conclusion that consonance is closely related to
the absence of (rapid) beats, as in von Helmholtz’s
theorv. But, again, this consonance maximum is not
independent of the mean frequency of the interval. The
curve of the critical bandwidth gives a better fit,
especially for the authors’ own data.

In conclusion, von Helmholtz’s theory, stating that
the degree of dissonance is determined by the roughness
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BE, Z\\Tkﬂ, G. Flottorp, and S. S. Stevens, *“Critical Band
Width in Loudness Summation,” J. Acoust. Soc. Am. 29, 548-357
(1937).

® A, M. Maver, “Researches in Acoustics. No. IX,” Phil
Mag. 5th Ser. 37, 239-288 (1894).
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of rapid beats, may he maintained. However, a moditica-
tion has to be made in the sense that minimal and
maximal roughness of intervals are not independent of
the mean frequency of the interval. A better hypothesis
seems Lo be that thev are related 1o eritical handwidth,
with the tule of thumb that maximal tonal dissonance
is produced by intervals subtending 2597 of the eritical
bandwidth, and that maximal t(m(tl consonance is
rcached for interval widihs of 1009, of the critical
bandwidih. In all experiments in which critical bands
have been investigated, the width of this band repre-
sents the frequency-difference limit over which siniple
tones cooperate. So 11 is not surprising that roughness
appears only for tones at a frequency distance not
exceeding critical bandwidth.

III. CONSONANCE FOR COMPLEX-
TONE INTERVALS

In this section, the data of the preceding experiments
arc used to explain not only why, for complex-tones,
consonance 1s related 1o simple frequeney ratio, bhut
also 1o illustrate some other well-known properties of
consonant intervals.

As Fies. 3-7 show, the curves, plotted on a logarith-
mic frequency scale, have approximately idemtical
shapes. This means that they all can be substituted by
the same curve in which consonance score is represented
as a function of the interval width with critical band-
width as a wnit. This standard curve is reproduced in
Fig. 10. It has been derived by plotting in one graph the
data points for cach of the mean frequencies as a func-
tion of critical handwidth and drawing the curve that
hest fits all the data. For small frequency differences,
the curve is extended on base of the curves of Figs. 1
and 2. By a linear transformation, the evaluation scale
is substituted by a “*consonance” scale, 1 corresponding
with maximum and 0 with minimum appreciation.

The curve of Fig. 10 can be used to get some impres-
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I16. 8. Frequency diilerence of two simple lones for maximum
dissonance as a function of the mean [requency of the tones. The
solid curve corresponds with 0.25 critical bandwidth as given by
Zwicker, Flottorp, and Stevens
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I'1¢. 9. Frequency dificrence of smallest consonant interval of
two simple tones as a function of the mean frequency of the tones.
The solid curve represents the critical bandwidth.

sion of how, for complex tones, consonance varies as a
function of the frequency difference between the funda-
mentals. In this case, consonance depends not only on
the distance between the fundamental tones, but also
between the harmonics.

We assume thal the total dissonance of such an
interval is equal to the sum of the dissonances of each
pair of adjacent partials, using the right-hand scale
of Iig. 10 to compute the total dissonance. This assump-
tion implies that these dissonance values may be added.
Though these presuppositions are rather speculative,
theyv arc not unreasonable as a first approximation, and
may be justilied for illustrating how, for complex-tone
intervals, consonance depends on frequency and fre-
quency ratio.

In this way, the curves of Figs. 11 and 12 were com-
puted for complex tones consisting of 6 harmonics.
Figure 11 illustrates in what way consonance varies as a
function of interval width, whereas Fig. 12 shows how
the consonance of some intervals, given by simple
frequency ratios, depends on frequency.

The curves of Figs. 11 and 12 may be considered as
an illustration of the following properties of tone
intervals.

1. With simple frequency ratios of the component
tones, singular points of the curve of Fig. 11 corres-
pond. As we restricted the number of harmonics to 6,
only peaks for frequency rutios containing the numbers
1- 6 could appear. If also the 7th and 8th harmonics
were included, the curve would have shown extra peaks
for +:7, 5:7, 6:7, 5:8, and 7:8. In this wuy, it may be
clear that, for complex tones, as produced by musical
instruments, consonance is related to simple frequency
ratios.

2. More-simple frequency ratios are represented by
sharper peaks. This means that octave and fifth are
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Tic. 10. Standard curve representing consonance of two simple
tones as a function of frequencv difference with critical bandwidth
as a unit. The curve is based on the data points of Figs. 1-7.
The consonance and dissonance scales are arbitrary.

much more sensitive to a deviation of their right fre-
quency ratio than the other consonant intervals are.
This explains why, In the equally tempered scale (verti-
cal lines of Fig. 11), the impure thirds are much better
tolerable than impure octaves and fifths would have
been.

3. The rank order of consonant intervals as given by
Malmberg® (see Sec. I-B) agrees rather well with the
relative heights of the peuks of Fig. 11 and the curves
of Fig. 12. Furthermore, Fig. 12 suggests that there
are only minor differences between the degree of con-
sonance of the fourth and the thirds.

+. As Fig. 12 shows, the degree of consonance is
nearly independent of frequency over a large range.
However, below a critical frequency, the intervals
become more and more dissonant, due to the bend in
the critical-bandwidth curve at about 300 cps. The
critical frequency is lower for more consonant intervals.
This behavior reflects the musical practice to avoid
thirds at low frequencies and to use mostly octaves or
wider intervals.

3. Apart from the range below 100 cps, the disson-
ance value is O for the octave (Fig. 12). This means
that, for up to 6 harmonics, all frequency differences
between adjacent harmonics exceed critical band-
width. It appears that this does not apply for tones
with higher partials. This fact explains why complex
tones with strong higher harmonics sound much sharper
than tones consisting of only 6 harmonics. It is interest-
ing that this fact was already emphasized by von
Helmholtz.4

IV. STATISTICAL ANALYSIS OF CHORDS IN MUSIC

The preceding section showed that several properties
of tone intervals can he explained by interference of
partials. This interference occurs, as the experiments
indicated, for frequency differences smaller than critical
bandwidth. Apparently, this bandwidth plays an im-
portant rdle in the sensation of simultaneous tones.

¥ Ref. 1, Chap. 3.
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This conclusion raises the interesting question
whether in music, too, we may find properties related
to critical bandwidth. Some preliminary investigations,
in which chords of musical compositions were analyzed,’
were very promising, and for that reason a more
detailed study was made.

The basic idea underlying these analyses was the
following. During the process of composing, the com-
poser at every moment makes a selection of tones from
the total set of tones “available” to him. One of the
criteria for selection is that the composer wants to
create a sequence of chords, in accordance with his
musical intentions, that at the same time realizes a
succession that varies in consonance and dissonance.
Leaving the time dimension out of consideration, a
“vertical” dimension remains: the composition of the
chord out of simultaneously present tones. We may- get
some msight into this vertical dimension by investigat-
ing the density distribution of simultaneous tones,
partials included, as a function of frequency. This is a
statistical approach; it will not give information about
occurrance of specific chords but only about the fre
quency of occurring of different tone intervals.

An illustration may serve to explain how the analysis
was done. Suppose that we are interested in the density
distribution of intervals with ¢>=523.3 cps as the lower
tone. First, we restrict ourselves 1o the case that funda-
mental tones only are taken into account, In this case,
we take out of a musical composition all chords that
contain ¢? and a higher tone simultaneously. We then de-
termine the fraction of time, relative to the total duration
of these chords, during which the nearest higher tone is
separated from ¢ by a distance of 1 semitone (c2
or d%), 2 semitones (d?), etc. In Fig. 13, an example of
such a density distribution is given (solid line). The
cumulative distribution, derived from the density
distribution by taking the fraction of time the interval
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I1c. 11. Illustration of the way in which consonance of an
interval with a lower complex tone of 250 cps and a variable
higher one depends on the frequency of this tone. Both complex
tones consisl of 6 harmonics. ‘The vertical lines represent interval
width after the equally tempered scale.
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Tanre I. T'undamental tones containing ¢? as the 1Ist, 2nd,
3rd, -+, 10th harmonic, respectively. In the last column, the
deviations of the frequency of these harmonics from the frequency
of ¢ are indicated (equally tempered scale).

Fundamental Frequency No. of Frequency of  Deviation
Lone {cps) harmonic  harmonic from ¢?
(cps) {cps)
c? 523.252 1 523.25 0
cl 261.626 2 523.25 0
f 171.614 3 523.84 +0.59
c 130.813 4 523.25 0
G 103.826 5 519.13 —4.12
I 87.307 6 523.81 +0.59
D 73.416 7 513.91 —9.31
C 65.406 8 323.25 0
Ai# 38.270 9 52443 +1.18
G\ ¢ 31.913 10 519.13 —4.12

does not exceed 1 semitone, 2 semitones, etc., is also
given (dots and dashes).

The procedure can be repeated by including 2nd
harmonics, 2nd and 3rd harmonics, etc. In general, in
the cuse of # harmonics, we take chords that include ¢2
cither as a fundamental lone or as one of the first »
harmonics of a lower tone. The density distribution is
then calculated for distances hetween ¢? and the nearest
higher tone, which may- also be either a fundamental
tone or one of the first # harmonics of a lower tone. In
Fig. 13, distributions for n=26 are plotted. It is found,
as was to be expected, that the 509 point of the cumula-
tive distribution for =6 gives a smaller interval value
than the corresponding point in the cumulative dis-
tribution for n=1.

Table I gives values of frequencies of tones that
contain ¢* as their nth harmonic, with z=1, 2, ---, 10.
The Table also gives frequencies of the harmonics of
these tones on the busis of the equally tempered scale.
Asis well-known, these frequencies do deviate somewhat
from the frequency of ¢® in some cases. These deviations
are left out of consideration herc.

To facilitate compution of interval distributions for
different values of the basic frequency and difierent
numbers of harmonics, special equipment has been
developed. It consists of (1) an apparatus io trans-
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¥16. 12. lllustration of the way in which consonance of some
intervals with simple frequency ratios depends on the frequency
of the lower tone, Both complex tones consisl of 6 harmonics.
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Fic. 13. Example of interval distributions at ¢?=323.3 cps
for n=1 (solid curve) and 2=6 (dashed curve). The other curves
represent the cumulative distributions for =1 (dots and dashes)
and =06 (dots). The interval distributions were computed from
the last movement of J. S. Bach’s Trio Sonata for Organ No.3inc
minor.

mute the notes and duration of chords, *‘playved”
successively on a keyboard, in punch code, using an 8-bit
tape, and (2) an apparatus to read out the tape and to
compute the interval distribution with both basic
frequency and »# adjustable.

In this way, 2 nwsical compositions were analyvzed,
the last movement of J. S. Buach’s Trio Sonala for Organ
No. 3in ¢ minor, and the 3rd movement (Romanze) of
A. Dvotdk’s String Quartet Op. 51 in E5 major. In both
cases, interval distributions were computed for C=65.4
cps, G=98.0 cps, c=130.8 cps, g=196 cps, c!=261.6
cps, g'=2392 ¢ps, elc., and taking into account » har-
monics with n=1, 2, 3, - - -, 10. For each of these distri-
butions the interval width was calculated (first in
semitones and from these values in cycles/second)
which is not exceeded during 259%, 309, and 739 of
lime, respectively.

In Figs. 14 and 15, the resulls are reproduced as a
function of frequency, with 2 as a parameter (solid
lines). As the data for #=10 were quite similar to the
data for n=9, the former case has been left out. The
dashed lines represent the critical bandwidth after
Zwicker, Flottorp and Stevens,? plotted as a function of
the lower cutoff frequency, and a quarter of this band-
width, corresponding with maximum dissonance (Fig.
10). For each frequency, the total duration of time of all
chords on which the concerning interval distribution was
based is indicated, using the duration of the shortest
note occurring in the composition as a time unit.

To grasp the significance of the curves, it may be
helpful to trace their shift as a function of the number
of harmonics. This is done on the basis of the graphs of
Fig. 14. For the case that only the fundamental tone
was taken into account, most of the intervals exceed
the critical bandwidth, in particular for the lower
frequencies [ Fig. 14(a)]. It will be clear that, as a func-
tion of frequency,, all intervals with the same frequency
ratio between the component tones correspond with a
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I'16. 14. Results of a statistical analysis of the chords of the last movement of J. S. Bach’s Trio Sonata for Organ No. 3in ¢ minor with %
(= number of harmonics taken into account) as a parameter. The solid curvés represent the interval width in cps between adjacent
partials, plotted as a function of frequency, which is not exceeded in 259, 30%, and 75% of time, respectively, computed from curves
as represented in Fig. 13. The dotted curves correspond with critical bandwidth and a quarter of this bandwidth.

straight line with a positive slope of 45°. As for octave
intervals, the frequency difference is equal to the fre-
quency of the lower tone; we see that for the lower
frequencies nearly all intervals of Fig. 14(a) exceed
the octave. This implies that, including also the 2nd
harmonic, these intervals reduce to octaves, resulting
in a line with a slope of 43° through the point Af= 100
cps for f=100 cps [Fig. 14(b)]. Above c=130.8 cps,
however, most intervals are smaller than the octave.
Because =2 means that all fundamental tones are
accompanied by their octaves, the curves of Fig. 14(b)
extend to a corresponding higher frequency. The in-
clusion of the 3rd harmonic muanifests itself in the
following ways: (1) the points corresponding with the

lower frequencies do not shift because the frequencies of
the new tones all are above that range; (2) in the middle
range, the “density” of tones increases, resulting in a
shift of the curves to smaller frequency differences; (3)
the curves are extended to a 309, higher frequency,
compared with the curves for n=2; (4) as most of the
intervals for the highest frequencies will be fifths, cor-
responding with the frequency distance between the 2nd
and 3rd harmonics of the highest fundamental tones of
the composition, this interval will determine the course
of the curves at the higher frequencies.

Every time when a further harmonic is added, a
repetition of this process occurs, with the result that
for increasing 1 (1) the frequency limit below which
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['16. 15. Results of a statistical analysis of the chords of the 3rd movement (Romanze) of Dvardk's String Quartet Op. 51 in Eb major.

The curves have the same meaning as in Fig. 14

no new tones arc added shifts to higher frequencies; as
we saw for #= 2, this limit is about ¢ = 130.8 ¢ps, whereas
for n=9 this limit is about ¢=323.5 cps; (2) in the
frequency range above this limit, the curves will shift
to smaller frequency dilTerences; (3) a [urther extension
of the curves to higher frequencies will take place; (4)
for the highest frequencies, the course of the curves
will mainly be determined by the interval (z—1):n.
The curves of Iig. 13 show the same trends as o
function of the number of harmonics. However, in
this case, the interval widths between the fundamental
tones are much smaller than in the former case. Only
for C;=065.4 cps do the intervals exceed the octave, asa
comparison of the graphs (a) and (b) shows. As a con-
sequence of this fact, also for #> 1 the curves of Fig. 15

correspond with smaller intervals than”the curves_of
Fig. 11.

After these more general remarks, we may compare
the position of the curves with the critical-bandwidth
curves. As we see, for increasing u, the shape of the
interval curves agrees more and more with the dashed
curves. In both I'igures, the agreement is greatest for
about 8 harmonics.

These results strongly suggest that critical bandwidth
plays an important réle in music. The signihicance of
this fact can be interpreted in the following way. As
we saw in Sec. 1, simple-tone intervals with a frequency
difference exceeding critical bandwidth are judged as
consonant and do not ditferentiate in this respect. On
the other hand, for smaller frequency differences, con-
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sonance evaluation strongly depends on interval width,
with a minimum for about a quarter of critical band-
width. So it is not surprising that just this range is
used for “modulation” hetween mare-consonant and
more-dissonant chords. However, it is surprising indeed
that, for a number of harmonics representative of
musical instruments, this is achieved in ahout the same
measure over a wide frequency range.

We have 1o realize that this equally deep “penetra-
tion” in the borderland between pronounced consonant
and dissonant simple-tone intervals, represented by the
upper and lower dashed curves in the graphs, respec-
tively, is a result of many factors. As the most impor-
tant ones we may consider:

1.—the fact that in the tone scale as developed in
Western music, a lot of intervals agree with simple
frequency ratios, so that harmonics of the different
component tones of a chord may coincide; otherwise,
the shape of the solid curves of Figs. 14 and 15 would
have been more flat, due to more dissonant chords.

2.—the fact that the frequencies of the partials of
the tones are multiples of the frequency of the funda-
mental tone. A deviation from this rule would have the
same effect as mentioned under (1). This may be re-
garded as one of the reasons (there are more!) why
instruments with inharmonic partials are not used to
produce musical chords.

3.—the way in which, as a function of frequency, the
composer selects his intervals. We saw above that in
Bach’s composition the frequency ratio between
fundamental tones is larger at lower than at higher
frequencies. As a comparison with Fig. 12 shows, in
this wayv very dissonant chords are avoided. Though
to a smaller degree, this is also the case in Dvotik’s
string quartet [intervals with the same frequency ratio
between the component tones correspond with a
straight line with a slope of 453° in Fig. 15(a)].

1.—the number of notes in a chord. It is clear that,
generally, for increasing number the mean distance
between adjacent partials will decrease. The fact that
the solid curves of Fig. 15 correspond with smaller
frequency differences than the curves of Fig. 14 may
be mainly due to this factor and the 3rd one.

5.—the frequency limits between which the funda-
mental tones are chosen and their distribution within
this range. So a multiplication of all frequencies by a
certain factor shifts all curves both horizontally and
vertically: to the same degree. As we see, this would
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influence their relation to the dashed curves much maore
for lower than for higher frequencies.

6.—the number of harmonics produced by the instru-
ments on which the composition is performed. Only the
influence of this factor has been studied here, showing
that the frequency range over which a typical harmonic
modifies the interval distributions shifts to higher fre-
quencies for increasing ». This implies that the number
of harmonics is not very critical. Most musical instru-
ments produce strong harmonics up to a number that
may vary from about 6 to 10, though in the last case the
tone has a sharp quality and is more suited for solo
parts.

The mere enumeration of these factors does not give
us much information about their relative importance.
So it would be of interest to know more ahout the degree
to which each factor determines the position of the
horizontal and the sloping parts of the curves. Moreover,
we should like to have more insight in the way in which
their position depends on musical stvle and on the
instruments for which the composition is written.
TFurther investigations are in preparation to answer
these questions.

V. CONCLUSIONS

Roth the experimental results on the evaluation of
simple-tone intervals and on the statistical analysis of
chords in musical compositions support the explanation,
promoted by von Helmholtz, that the singularity of
intervals with frequency ratios determined by small
integer numbers is due to interference of adjacent par-
tials finding expression in a roughness sensation. The
investigations indicate that, as a function of frequency,
the transition range between consonant and dissonant
simple-tone intervals is related to critical bandwidth.
These intervals are evaluated as consonant for fre-
quency differences exceeding critical bandwidth, whereas
the most dissonant intervals correspond with frequency
differences of about a quarter of this bandwidth.
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